Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21984, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319781

RESUMO

The Holocene period (last 11,700 years BP) has been marked by significant climate variability over decadal to millennial timescales. The underlying mechanisms are still being debated, despite ocean-atmosphere-land connections put forward in many paleo-studies. Among the main drivers, involving a cluster of spectral signatures and shaping the climate of north-western Europe, are solar activity, the North Atlantic Oscillation (NAO) varying atmospheric regimes and North Atlantic oceanic gyre dynamics. Over the last 2500 years BP, paleo-environmental signals have been strongly affected by anthropogenic activities through deforestation and land use for crops, grazing, habitations, or access to resources. Palynological proxies (especially pollen grains and marine or freshwater microalgae) help to highlight such anthropogenic imprints over natural variability. Palynological analyses conducted in a macro-estuarine sedimentary environment of north-western France over the last 2500 years BP reveal a huge and atypical 300 year-long arboreal increase between 1700 and 1400 years BP (around 250 and 550 years AD) that we refer to as the '1.7-1.4 ka Arboreal Pollen rise event' or '1.7-1.4 ka AP event'. Interestingly, the climatic 1700-1200 years BP interval coincides with evidence for the withdrawal of coastal societies in Brittany (NW France), in an unfavourable socio-economic context. We suggest that subpolar North Atlantic gyre strengthening and related increasing recurrence of storminess extremes may have affected long-term coastal anthropogenic trajectories resulting in a local collapse of coastal agrarian societies, partly forced by climatic degradation at the end of the Roman Period.

2.
Nature ; 412(6848): 724-7, 2001 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-11507637

RESUMO

To determine the mechanisms governing the last deglaciation and the sequence of events that lead to deglaciation, it is important to obtain a temporal framework that applies to both continental and marine climate records. Radiocarbon dating has been widely used to derive calendar dates for marine sediments, but it rests on the assumption that the 'apparent age' of surface water (the age of surface water relative to the atmosphere) has remained constant over time. Here we present new evidence for variation in the apparent age of surface water (or reservoir age) in the North Atlantic ocean north of 40 degrees N over the past 20,000 years. In two cores we found apparent surface-water ages to be larger than those of today by 1,230 +/- 600 and 1,940 +/- 750 years at the end of the Heinrich 1 surge event (15,000 years BP) and by 820 +/- 430 to 1,010 +/- 340 years at the end of the Younger Dryas cold episode. During the warm Bølling-Allerød period, between these two periods of large reservoir ages, apparent surface-water ages were comparable to present values. Our results allow us to reconcile the chronologies from ice cores and the North Atlantic marine records over the entire deglaciation period. Moreover, the data imply that marine carbon dates from the North Atlantic north of 40 degrees N will need to be corrected for these highly variable effects.

3.
Science ; 290(5498): 1905-7, 2000 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17742055

RESUMO

Throughout the last glacial period, rapid climatic changes called Dansgaard-Oeschger (D-O) events occurred in the Northern Hemisphere. As Labeyrie discusses in his Perspective, these events are ideal targets for testing our understanding of climate change and developing climatic change models. Important steps toward understanding D-O events, particularly regarding the role of the low latitudes, are now reported by Hughen et al. and Peterson et al.

4.
Science ; 278(5342): 1451-4, 1997 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-9367955

RESUMO

Analysis of a continuous sedimentary record taken in the Maldives indicates that strong primary production fluctuations (70 to 390 grams of carbon per square meter per year) have occurred in the equatorial Indian Ocean during the past 910,000 years. The record of primary production is coherent and in phase with the February equatorial insolation, whereas it shows diverse phase behavior with delta18O, depending on the orbital frequency (eccentricity, obliquity, or precession) examined. These observations imply a direct control of productivity in the equatorial oceanic system by insolation. In the equatorial Indian Ocean, productivity is driven by the wind intensity of westerlies, which is related to the Southern Oscillation; therefore, it is suggested that a precession forcing on the Southern Oscillation is responsible for the observed paleoproductivity dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...